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1. Introduction

Previous work on linear regression models where the parameter

space is restricted by linear inequalities has concentrated on ~

inference from the sampling point of view. For this model the least
squares estimate is a solution to a quadratic programming problem [10].
This estimate has a mixed type sampling distribution (i.e., partly
continuous and partly discrete) that is difficglt to handle analytically,

aven assuming normal errors. The standard test for significance of

coefficients based on the Student-t distribution can be very misleading

[12]). Even moments of the estimate are difficult to derive [10,16].
Although much work has been done on Bayesian analysis of regression
models, nothing has appeared when the parameter space is restricted.
This paper gives an analysis using a natural conjugate prior of the
mixed type. Emphasis is placed on determining posterior probabilities
that constraints are binding and on determining posterior distributions
of the parameters. An analysis is also given for a vague prior of the
mixed type.
The basic model is presented in section 2 and examples are given
in section 3. The likelihood, the prior, and the posterior are discussea
in sections 4, 5, and 6 respectively. Section 7 applies the theory

to analyze temperatures of a chemical reaction.

2. The Basic Model

The observations are assumed to follow the standard linear model

y =XB + e




Ty
e
where y = (yl,...,yn), B = (81,...,Bp), X = (x1 iy xp), and
e~ N(O,T'll). The parameter space
o=1{8:c8 > rl (2.2)

is assumed to be nonempty, where C 1is an r x p matrix.
It will prove convenient in the sequel to separate the un-
restricted from the restricted parameters. Thus, we assume that the

last p - Pg columns of C are all zeros so that C can be written

C = (¢, 0)

where 0O 1is an rX(p -po) dimensional matrix of zeros and

/
CO=(d

and unrestricted parameters, B’ = (B,, 8. with B, = (B,,...,B
3 2 gl

BREE dr)‘ If the parameter B 1s partitioned into restricted
PO)
ani X 1is similarly partitioned into (X1X2) then the model (2.1)

can be written y = X;B, + X;B, + e with Q= {B:COB1 > £}, The

likelihood for the model can be written

£(8,7]y) «™/2 expl- 7 (y-X8)' (y-X8)/2} I(R) (2.3)

where I 1s the indicator function.

We assume throughout that pO:>O since otherwise there are no
restricted variables, and the standard Bayesian analysis applies
[e.g. 4, section 11.10].

The constraint 1 (1<1<r) 1is said to be binding if
diBl = f; where £ = (fl,...,fr). In certain applications it is of
interest to determine which constraints are binding. Since a Bayesian

approach to the problem is adopted here, we compute the posterior




. P
probabilities of the various possible sets of binding constraints.
Throughout this paper we will assume that Co is of full
rank, that s = {11,...,ik} is a set of non-binding constraints,

and that "ir} is a set of binding constraints.

s = {lk+1"'
We can write the binding constraint equations as

with

= AT
,...,dir) and fg (

If r-k>1, the set of B satisfying (2.4) is a hyperplane of
dimension smaller than p. Thus, 1if the posterior distribution on

3 1is absolutely continuous with respect to p dimensional Lebesgue
measure, the posterior probability of the constraint s being binding
is 0. To alleviate this problem, the prior distribution will be
chosen of the mixed type with positive probability on these singular
subsets. Dickey [5] gives a bibliography of previous uses of priors

of the mixed type.

3. Examples

3.1 Time Series Modelling

The autoregressive process of order p (AR(p))

P
Ve = i Biyt-i + Bp+1+et g SRR
i
)

with yo,...,yl_p considered as non-stochastic and et iid‘~W(O,T'

can be written in the form (2.1) with B8’ = (81,...,8 and

p+1)

R |




Tna Ip.p ** yn-p
L]
We will consider the case p=2 (i.e., AR(2)).
The values of (81,32) determine if the time series is

explosive. In fact, the series is explosive if 8 ¢ Q where

-1 -1
G is given by (2.2) with C 1 Iy and
0] 1 o)

£’ = (-1,-1,-1). If one is willing to assume a priori that the

time series is not explosive, the assumptions of section 2 are

satisfie%. Even though the matrix X 1s stochastic, the likeli-

hood can be written in the form (2.3). Since the theory of

sections 4-6 is still valid for stochastic X matrices, the non-

explosive AR(2) 1is an example of the model introduced in section 2.
Zellner [15, section 7.3] computes numerically the posterior

probability of the series being explosive assuming B; = O and using

5
the vague prior

-1
P(Bl,Bz,T) «e T

He notes that a similar analysis could be performed using an
informative prior, such as the conjugate normal/gamma. Using any
prior for (61,32) that is absolutely continuous with respect to
two dimensional Lebesque measure, the posterior probability of any

of the constraints being binaing is 0. This seems unfortunate




since Box and Jenkins [2] demonstrate empirically that models
with binding constraints are useful in modelling and forecasting
both economic and physical systems. In the present problem

s = {1} corresponds to a difference of order 1 and 5 = {1,3}

th difference

BJ

corresponds to a difference of oraer 2, where the K

z, of the series y_ 1is given by 2z (1-B)k y, and

t:
For example, s = {1} implies By +85

yt - yt_J'
1 so that the AR(2) can be

written
zy - (1 'Bi)zt-l = Bj-+et

where 2z, = (1-B)y,. Thus the first difference follows an AR(1)
model.

Box and Jenkins choose between competing models by sampling
theoretic criteria such as goodness of fit tests and residual sum
of squares. From the Bayesian viewpoint model selection can be
accomplished by the computation of posterior probabilities. The
forecast functions of the various models can be combined in the
standard method. Namely, the predictive density of the future
observations y 1is given by

p(yly) = - p(s|y)p(¥ly,s)
where p(¥|y,s) 1is the predictive density of § given constraints
s are non-binding and p(sly) is the posterior péobability of
constraints s béing non-binding.

This example is continued in section 7 where series C

from (2] is studied.




6.
3.2 Polynomial Regression
Stevens [14] derives the model
P .
aw/(1-x) = I BJXJ 1 (3.1)

J=1
where Aw 1s the difference in weight concentrations of a solute
and x 1s a dimensionless constant which can be considered known

[14,equation 2]. The parameter space is (2.2) with

1 1=]
¢ = (Cij) a pxp matrix with Cygq = =1 J=1i+1
J 0 otherwise
th

and f=0 [14, equation 4]. If the 1 constraint is binding
(Bi = 31+1)’ a polymer of 1 times the basic molecular weight
is not present in the particular molecule.

Based on equation (3.1) either of the following models may

be appropriate

P -
(a) ¥y = Awi/(i'-xi) = jil BjxiJ el ey
P 3-1
(b) yy = oW, = Jil iji (1-—xi) + ey

where e ~ W(O,T-l

I). These models are both of the rorm (2.1),
and model (a) 1s the standard polynomial regression model with
restricted parameter space.

The choice of the order p of the polynomial regression
i1s also of interest in this problem. Halpern [6] discussed choice
of the order in the unrestricted polynomial regression using the

natural normal/gamma prior. The analogous method could be used in

the restricted case.




3.3 Transition Probability Estimation

Judge and Takayama [10, pp. 176-8] use quadratic programming
to obtain the least squares estimate of the transition probabilities
of a finite Markov Chain. We consider the chain with 3 states and
demonstrate how the theory of this paper applies. Judge and
Takayama show the equations

2

Fr s ™ Yi,t-1 Pij

+ u for L <£JE€£Hh istn
il

Jt
can be written in the form

¥= Xp+u with

<!
I

(v1» ¥5s ¥3)s ' = (P1s Pps P3)s w' = (ug, up, us),

yj i (yj’li""yj’n)’ pJ = (le’p2j3p3J>) uj ™ (ujlﬁ""ujn),

Xl 0] (0]
X=|[]0 Xy 0 where X, = (2, 2z, 25) and
0 0] X

1

ZJ = (yJ,O""’yj,n-l>'

Since p1-+p2-+p3:=1, one can eliminate p3 and write these
equations as (2.1) with
Xi 0
v’ o= (¥, Y50 V3 T € E R A y
g o

2 RN




8.
8' = (pysP5), and e=u. The inequality restrictions are of the

form (2.2) with

where I is the k xk identity matrix and 1 iz & k vwvector of
k k

ones.

3.4 One Way Layout

Consider the 1 way fixed effect ANOVA model
yij=31+eij i=1,.--,p and j=1,...,n

with B; rixed and ey i.1.4. ~ n(O,T-l). We assume a priori
that the means are non-decreasing (i.e., BluSBEBS"'.SBp)' This
constraint can be written in the form (2.2) with C = (Cij) a (p-1) xp

dimensional matrix with

1 J=1+1
Cyy = 1 1=] and f=0. An example of the use of

0 Otherwise
this model is given in [1, example 1.3].
Other linear restrictions can be handled similarly. In the
case of monotone decreasing parameters, Lindley [11] discussed the

posterior distribution of the parameters assuming a vague prior.




4. The Likelihood

The following theorem expresses the likelihood in a form
which suggests the natural conjugate prior of the mixed type to be
employed. It shows that the likelihood for B e s can be specified
by a=p-r+k parameters which, in general, can be picked in different

ways.

Theorem 1
For any set s of nonbinding constraints there exists a
subset {jl,...,jq} of 11,2,.:+;p} such that if T = Bji and
/

Yy = (ni,...,na) then the likelihood (2.3) can be expressed as

n/2

L(s,v,T|y)e T exp{-7(z-Ry)  (z-Ry)/2} 1I(Q). (4.1)

The event Q can be expressed as the set of linear inequalities

Q = (DY2 D W) (4.2)
where D 1is a kxa, dimensional matrix, v' = (yi,yé), a, =
dimension Yy for  i=1 and 2, @y =P - Pys and a2=po+k-r.

If either of the dimensions of D is 0, I(Q)=1. The "n dimensional
vector 2 1s g funetion of X and y.

To be precise the quantities 2z, R, D, w, and vy should be
subscripted to denote which of the possible sets of size @ has been
picked. We assume throughout that a rule has been established for
picking the variables so that the subscript can be surpressed without

confusion.




0.
Proof: Since the matrix CO was assumed of full rank, the
number of binding constraints satisfies 0 < r-kg;po. It is con-

venient to separate the proof into the following three cases.

Case 1 r-k=0 (no binding constraints)
Since r > 1 and Pg 2 1 by assumption, one has min[aEAt}Zl

in this case. The proof follows by defining z=y, R==(X1 X5)

Yj_=Si for 1i=1 and 2, D = C, and w = f.
Case 2 1 € r-k < Po

We can pick columns E = [ji""’jr-k} of Cg defined

in (2.4), so that the resulting matrix is nonsingular. Let E be

the complement of E (in {1,2,...,po]) and define matrices
C;14(Cyq) as columms E of Cg(C.) and similarly
012(C22) as columms E of CE(CS)

where € = (d, o dy ) 10 k=l C,y and C,, are degenerate.

S ll lk

Defining vectors Bé = (B,

J1’°'-,B' ): Y2 — (B-

% g
Jr-k Jp_k+1 Jpo

and f; = (fii,...,fik), for k>0 the constraints can be written

C14B3 + C1pYp = T3
Ca1P3 + Cop¥a > T4

Using the above equations to eliminate 83 one obtains

e —— T S AT




11.
The nonbinding constraints can be written as Dy2 > W Where
D = Cpp-CpyCysCyp snd W = £q - CpyCi1T5 -
Now define XB(Xu) as columns E(E) of X so that
X8, = X8, + chii(fg-012y2) + Xy, = Ry + chiif:

=1

X8 =

M=

-1 ’ ’ ’
with R = (X2 X, - 3C11C12) and vy = (52,v2). Thus y -X3 =2z - Ry

with z:=y-X}C£ifs. The rest of the proof follows easily in this case.

For k = 0 the proof is analcgous.

Case 3 r-k::po (restricted parameters completely specified)
In this case E 1s empty so that Clz'cez’ and Yo as

defined in case 2 don't exist. One has that

-1
By = Cy475

and the inequality constraints can be written as
c C'l f £
218 8 7

which determine whether the constraints can be binding together or not.
o ;
Letting R = X2, Y = 92, and z = y-chilrg the result

follows-

G TR
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5 The Prior

The likelihood of Theorem 1 suggestcs a prior of the
mixed form. Let p(s) denote the a priori probability of the
set of constraints s being non-binding. Since p(y,Tls) determines
p(B,T]s), 1t suffices to specify p(y,7|s), which we assume to be
the natural conjugate prior suggested by
Theorem 1. Probabilities of events and distributions of parameters
can be calculated in the usual way. The following theorem evaluates the
constant of integration for the natural conjugate prior. This constant
is necessary to calculate the Bayes factor for determining posterior

odds of the different sets of binding constraints.

Theorem 2. Let vy’ = (Yi’Yé) where vy, has dimension a; and

consider a prior of the following form

p(y,7ls) = ¢ T(U+a)/2'1exp{- T(bu + (v-a)’v(vy-a)) /2} 1(Q) (5.1)

Vi1 Vip
Where V = is a positive definite, symmetric matrix,
Vag Y
! - ' I
ViJ has dimension ay X ay 1£34,,3£8 ¥ = (al,ae) where a,

has dimension oy and
i min{az,k} =0
1(Q) =

I(Dy, >w)  otherwise

Then the constant of integration ¢ 1is given by




15,
23 ¢y min[ag,k} =0
¢, P(Q) otherwise
where
¢y = T(v/2)(2m)*2/|v|1/3(up/2) /2

and P(Q), with Q as in (4.2), 1is computed using the distribution
¥y Taz(az,V22.1/b,u). That is, v, 1is an a, dimensional
multivariate t random variable with mean 85 precision V22 1/b,
and v degrees of freedom [4, pp. 59-61]. The dimension of the

multivariate t random variable often is omitted in the sequel.

Broef:, If min{ag,k} = 0, the parameter space is unrestricted so
that the prior is the standard normal/gamma and the constant is easily

evaluated. For the case min{az,k} > 0, integrating the unrestricted

parameters Y, ©one obtains

&, /2 (wan)/2
et = (2m) Vv 17 [0 explen((vpmap) ' Vay, (Yamay) +Bv)/2)

I(O)dey2

ot
22,1 = Voo = V3 V37

the multivariate t form, one has

where V =7V V12° Integrating out T and recognizing

-1

2
™l = (am) D (v/2) (1 1V, 1 1) B (W/2)"Y2 [e(v,la,,V,, 1/6,V)ay,

where f(yelae,vaz.lfb,v) is the density of v, where Y2-Ta2(a2,V22.r%;VL
Thus ¢t = clP(Q) where P(Q) 1s computed as in the statement of the

Theorem.

e ——RN 7
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The following corollary shows that P(Q) of Theorem 2 can be
computed (if r< po) using the c.d.f. of the multivariate t dis-
tribution with mean vector equal to O and diagonal elements of the
precision matrix equal to 1. Approximations to the c.d.f. in this
case have been given by John [7]. In the case r> Py DY2 has a
degenerate multivariate t distribution so it is more convenient to

compute P(Q) using the a, dimensional distribution of vy, (rather

than the distribution of DY2).
Corollary 2.1
1 ...1 _1 -
If r<p,, P(R) = F(-w|-Day, (DV22.1D') /b,v) where F(+|a,P,v)

is the c.d.f. of a T(a,P,v) distribution. Furthermore, if the pre-

cision matrix 2 = (DVE% lD')' /b = (oiJ) is written as AAA’ with

where § is the Kronecker delta and

A = (ob 13

1 844

a - (oij/(oiicjj)é) then
P(Q) = F(A(Dag-w)IO,A,v).

= -1
Proof: If kga, = py=-r+k, then Dy, ~ Tk(Daz,(Dvez.lD’) /b,v)

(see, for example, [13, Theorem 6.2.1]). Thus, if Po2T,
P(Q)

F(-w|-Day, (V33 D')™1/b,v). Since AD(Yp-a,) ~ T(0,4,v),

P(Q)

F(A(Daz-w)|O,A,v).

As stated above in the case r>po, it is more convenlent to
choose a different transformation from t hat given in Corollary 2.1.
If the precision matrix 2 = V22.1/b is factored as in Corollary 2.1
(=AaA"), then u=Aa (\(2 - a2) ~T(0,4,v). Under this transformation
the region 0=(DA'lu>w-Da2). Thus, the inequalities on u are
linear so that the region is a polygon or an infinite region with
planer boundaries. John [8,9] has given methods for approximating




——
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the probability P(ueQ) where u has the above distribution.

In the case min{o,,k} = 0 the prior of Theorem 2 reduces
to the standard normal/gamma. In the restricted case the distribution
of the parameters is more complicated and is given in the following

corollary.

Corollary 2.2

If min{ae,k} > 0, conditional distributions of the parameters

Yl and Y2 are

(1) Yzls

with the parameter as given, truncated to the space (4.2).

kPR /o,v)I(Q), a multivariate t distribution,
as 27722,

(11} The p.4.f. p(Ylls) of Y; given s 1is
p(Yl|S) = f(Yllal.' vll.E/b’v) S(Yl)
where f 1s the density of the multivariate t and
g(yl) = P(DY,>w) where vy, ~ T(ag.l,(v+al)V22/(bv-+(Yl-al)‘

5 o3
Vi1.0(Y1-89)), V+ay) and a, g =ay - Voo Vo (Yy-2q).

Proof: (i) was shown in proving Theorem 2.

(11) By integrating out 1t one has
p(v]8)a((y-8) 'V(v-a) +vb)~(V*a)/2 1(q).

Using the identity

(v-2)'V(y-a) = (¥y-87)'Vy3 o(v-89) + (vp=a5 1) Vonlvp-as ;)
one has

p(Yll S) a((Yl-a.l) 'Vll.2(Y1'a‘1)+ vb)"(V"'al)/Q

N T VTR
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-(v+a)/2

- 2 (v~ ‘v =
fvo+ (v7-20) V; plyg-27)) i (142 °2.1) ?Q(YQ w B, y @, (5.2
a ' Vb + (Yy-89) Vyq p(v1-2q)

The first term on the right hand side of (5.2) is proportional to

f(Ylial’Vll.Q/b’V) and the second is proportional to g(vy).

It is instructive to compare these distributions with the ones
obtained in the unrestricted case (i.e., I(Q) =1 in (5.1)). In the
unrestricted case the distribution of y2|s is T (a2,V22.1/b,v)
which is the same as in (i) modulo the restriction. Similarly, the
density of ylls in the restricted problem equals its density in the un-
restricted problem times the function g(yl).

Corollary 2.2 shows that picking the constants (a,V,v,b) of the
prior (5.1) is considerably more complicated than picking the constants
in the unrestricted case. The following simpler prior is useful when
prior knowledge about the parameters (given the constraints) is vague.
Box and Tiao [2] use similar priors as reference priors. Of course, in
repeated experiments the posterior of the first experiment can be used
as a prior distribution for the second. Since the prior (5.1) is con-
Jugate for the likelihood (4.1), it is useful in analysis of repeated

experiments.

Corollary 2.3

Let Q be as in Theorem 2 and assume that the Lebesque measure

m(Q) < ©». For a prior density of the form

(v+a1)/2-l
-

p(y,r|s) = o exp{=-1(bv + (Yl-al)'vll(yl-&l))/Q] I(q) (5.3)

then one has

il o czm(n) min{k,aa] 23
0 s min{k,aa] =0
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/2 1/2

with ¢, = (2r) r(v/e)/lvlll (bv/2)v/2.

2

Proof: The integral of (5.3) 1is easily evaluated since (Yl,T), which
has the standard normal/gamma form, is independent of Y,.

Note that the constants of the prior (5.3), unlike (5.1) can easily
be picked since

tls = rv/2,bv/2

Yl's & Tal(al’vll/b’V).

The prior (5.3) can be obtained from the more general (5.1) by
setting the elements of V12,V22, and a2 equal to O, changing a to
aq and modifying the constant of integration. Similarly, the posterior
distribution using prior (5.3) can be obtained from the posterior using
prior (5.1) by the same specification. This will be utilized in the

next section.

6. The Posterior

Since the conjugate prior distribution was assumed in section 5, the
posterior distribution is of the same form as the prior. Thus, distri-
bution results obtained for the prior distribution (i.e., Corollary 2.2)
are valid for the posterior distribution with modified constants.

Theorem 3 gives the rule for updating the constants in going from the
prior to the posterior distribution.

Theorem 3. Using the likelihood (4.1) and the prior (5.1) one obtains

a mixed posterior with

p(y,7 ly,8) e V98)/2=1 (e ((v-3)'V(v-3) + 3%)/2} I(n) (6.1)
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with constants vV =v+n, V =V + R'R, a = V’l(Vai-R'z), P = (vb+Q) /v

where

Q = (z-Ry)'(2-RY) + (a-2)’'V(a-2) + (¥-2)'R‘R(7-2) and ¥ is the OLS
estimate (R‘R)™IR’z.

Proof: Follows by combining the likelihoad with the prior and completing

the square in the exponent (see [16, p.308] for a calculation of Q).
Using prior (5.3) the posterior density p(y,t|s,y) is of the

form (6.1) but with the following modifications in the constants.

(le g) and a’' = (ai,o‘) then V,a,b, and Q are as given

in Theorem > and V = n+ v-a,.
The following theorem gives (up to a multiplicative constant) the

Let V =

posterior probability of the binding constraints. Zellner [15, section

10.4] gives a similar analysis for unconstrained linear regression.

Theorem 4. Using likelihood (4.1) and the prior (5.1) the posterior
probability p(s|y) of constraints s being non-binding is given by

p(sly) “CB(S) p(s) where

v
'_l

P S cy P(Q)/P(Q) min{a,,k]}
> 3 Cu min{ae,k} -

|
(@]

P(Q) 1is computed as in Theorem 2, P(Q) is the probability of the same
event using the distribution vy, ~ T(EE,VEZ 1/5,3) where the constants

are given in Theorem 3, and

—11/2
ey = T(5/2) (wo) Y2 1v1Y2/ 0 (v/2) 5B)V21V )




-]
\O

Proof: For min{ag,k} > 1 one has

p(s,y »7ly)= cp(s) 7 (v3)/2-1 oyp(-r(Bo+(v-7) ‘T(v-3)) /2}I(q)

where ¢ = c(s) 1is given in Theorem 2. Using the method of Theorem 2

to integrate out (Y,T) one obtalns

v/2

p(sly) =p(s) T(v/2)(2")¥?B(qa)/ (| /2(36/2)"/2 c;P(a))

=2, B(q)/P(q)-

A similar argument gives the result in the case min{az,k} = 0.

It follows easily from Theorem 4 that the Bayes factor of model 85
to model S 4 is given by c3(si)/c3(sj). The rest of this section
deals with the case when the prior information is vague. Corollary 4.1

specializes the result of Theorem 4 to the case when using prior (5.3).

Corollary 4.1. Using likelihood (4.1) and the prior (5.3),

p(s|y) =cx(s)p(s)

{Cu P(a)/m(q) min{k,a,} > 1
with c3 =

cy min[k,az} =0

with
; a,/2 —
¢y = T(9/2) vy, 1Y2(w0)¥/2 7 27/ (r(v/2) |71 1/2(36)V72)
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with 3,V,D as defined following Theorem 3 and P(Q) as in Theorem &

with modified parameters.

Proof: For min{az,k} > 1 one has

T('\3'-1-0)/2-1 e

p(Y,7,8]y) ey exp{-7(Bbv + (v-2) ‘V(v-2))/2}I(Q)

with V,V,5 as above and ¢y &iven in Corollary 2.3. Integration with
respect to (yv,7) glves the result.

In many situations the prior opinion about (Yl,T) will not depend
on s. In this case the expressions for the posterior probabilities of

the various models are somewhat simpler.

Corollary 4.2. Using prior (5.3) and assuming b,v, and Vil are the

same for all s, then p(s|y) 1s given as in Corollary 4.1 with

/2 -~
ey = T(5/2) 7 2 /(1MM2(55)V/2)

Proof: The quantities IVilll/g, (vb)V/g, and T (v/2) are the same.

Before experimentation, knowledge about Yl and T may also be
vague. This situation can be characterized by small values of b,v,
and Vll' We can approximate the situation by letting all these quantities
converge to zero. By Scheffré's Theorem, the limiting values then serve

as approximate probabilities in the case of vague prior information.

Corollary 4.3. The limit of cy (in corollary 4.2) as v =+ 0, b = 0,

and Vll - 0 (i.e., all coordinates go to O0) is given by
a,/2
cy = F((n—az)/z) T2 /lR'Rll/2 Q(n a2)/2

where Q = (z-RY)’(z-RY).
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Furthermore, P(Q) of corollary 4.1 converges to P(DY2:>w) where

Yo ~ T(Ye,(n-ag)vgg_l/Q, n-ae) and Vég.l is computed from ¥ = R’R.

Proof: Taking the 1limit of the above expressions, one has v - n-a,,
V>R'R, Vb >Q and & > y.

A reasonable sampling theoretic approach to model selection is
through maximum likelihood. Although the m.l.e. of (g,T) can be
computed using quadratic programming, to contrast the Bayesian and
sampling methods it is instructive to calculate the m.l.e. of (Y,7,s).
For fixed s the unrestricted maximum of the logarithm of the likeli-
hood (4.1) is (ignoring an additive constant)

q(s) =-n(l+4a Q/n)/2

where Q = (z-RY)’(z-RY) and ¥ 1is the OLS estimate. The m.l.e. of
maximizes q(s) (i.e., minimizes the residual sum of squares) over
those s such that (D§22:w). If any of the theoretical constraints
are violated using the OLS estimates for the parameters, the model is
not feasible and can't be selected. This 1s somewhat unfortunate since
sampling error could lead to violation of a constraint if the true
parameter is near the boundary of the parameter space.

The Bayesian method does not completely rule out models which have
a constraint violated by the OLS estimate. Gross violation of a con-
straint does lead to a small posterior probability. For example,

using the approximate distribution of Corollary 4.3
P(0) = F(A(DY,-w)|0,4,n-a,)

where A and A are determined as an in Corollary 2.1 with precision
matrix (n-aa)Vée.l/Q from Corollary U4.3. If a component of A(DVe-w)
is less than -3, the posterior probability of that model will be small.
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Corollary 4.3 shows that the Bayesian method of mbdel selection
also leads to picking models that have small residual sums of squares
(1.e., small Q).

The next section applies this theory to a time series of tem-

peratures of a chemical reaction (2, series C].

~

7. Analysis of Chemical Temperature Data

Computation of the posterior probabilities of binding constraints
is given now fof 226 successive readings of temperatures of a chemical
process [2, series C]. For this series Box and Jenkins tentatively
identify the number of differences to be d =1 or 2 ([2, p.185].

The model with d = 2 (even when overfit) is untenable based on the x2
éoodness of. fit test, but the model with 4 =1 passes all the diag-
nostic tests [2, pp.292-3].

It is reasonable to restrict attention to AR(2) models only after
loocking at the partial autocorrelation functiocn. Thus, the prior dis-
tribution is chosen in this case after some data analysis. Dickey (5]
advocates using an approximate prior after some "data crunching."

After the identification stage of Box and Jenkins, one might have
strong opinions about the parameters. As an operational (or reference)
prior, we employ the vague prior (5.3). The consfants cu(s), which
determine the Bayes factors, are calculated from the limiting values of
Corollary 4.3. Table 1 gives the value of 1 (p(sly)/p(s)) for the

seven possible models. The logarithm of the Bayes factor for model Sy

to sy 1s given by n(p(syly)/p(sy)) - m(p(sjly)/p(sj))- Thus the

Bayes factors can be computed by subtraction and then exponentiation.

Using the Bayes factor one can easily calculate posterior probabilities w
for any choice of p(s). The values for p(s) = 1/7 are given in ‘
Table 1.

-~ Table 1 about here =--

j- St s m"“~ Thoa

B




v
The table confirms the findings of Box and Jenkins that a single
difference is best, but a probability of .3 is assigned to the model
with no differences. The similarity in the estimates of the para-
meters (31,52) for the models corresponding to d =0 and d =1
shows why it is difficult to pick between these models. Of course,
one might assign higher prior probability to higher differences (i.e.,

p({1})> p(none)) since this is an uncontrolled reaction.




Table 1 Bayesian Analysis of Temperature of Chemical Reaction

u|

none

By
.8017
.8090
.0069

- 9903

B
X 10'4
X II.O'5

X 10'“

X 10‘“

X lO"2

X 10-3

Q
3.8778
4.0026

L2.959
4,3059
43,005
L, 4384
14681

2 (p(sly)/p(s))
L7,
248.
-18.

.863

-8.
245,
-662.

237

937
752
962

Qu2
413
237

2L,
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Abstract

This paper considers the general linear model when the parameter
space is subject to linear inequalities. Four examples satisfying
the assumptions are given. A Bayesian analysis of this model is pre-
sented using a natural conjugate prior density of the mixed type.

An analysis is given for the case that prior information about the

parameters 1s vague. The Bayesian and sampling methods of model selec-

tion are compared in the case when little is known a priori.
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